
©1987-2006 Sasan H. Ardalan 1 Transmission Line Networks

Modeling and Analysis of Transmission Line Networks

Sasan H. Ardalan

Abstract

A data structure and algorithm for representing, and simultaneously solving for all nodes
within complex transmission line systems is presented. The method is based on
representing the network as a recursive tree structure and solving for the voltage, current,
and impedance at each node using recursive programming techniques. First, all frequency
dependent parameters within the tree structure are updated, then in a post-order traversing of
the tree, the impedances at each node are computed followed by a pre-order traversing of the
tree to compute node voltages and currents. The technique is useful in networks with many
branches and mixed transmission line characteristics. Applications include the modeling
and simulation of pulse propagation in distribution line carrier networks, local area
networks, and the digital subscriber loop with bridged taps, and plane wave propagation .
This paper expands on the original paper [1] and includes simulations in support of the
algorithm.

©1987-2006 Sasan H. Ardalan 2 Transmission Line Networks

Copyright (c) 1987-2006 Sasan H. Ardalan
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free
Documentation License".

http://trantopcalc.sourceforge.net/

©1987-2006 Sasan H. Ardalan 3 Transmission Line Networks

Table of Contents

I. INTRODUCTION. 2

II. TRANSMISSION LINE NETWORKS. 2

III. RECURSIVE PROGRAMMING AND DATA STRUCTURES. 7

IV TRAVERSING TREES . 8

V. RECURSIVE CALCULATION OF NETWORK IMPEDANCES. 1 0

VI. RECURSIVE CALCULATION OF NODE CURRENTS AND VOLTAGE.. 1 1

VII. COMPUTER SIMULATION RESULTS . 1 2

VIII. CONCLUSIONS . 2 0

IX REFERENCES.. 2 0

©1987-2006 Sasan H. Ardalan 1 Transmission Line Networks

©1987-2006 Sasan H. Ardalan 2 Transmission Line Networks

I Introduction
In many digital communication systems, complex transmission line networks are
encountered which contain mixed transmission lines with different characteristics and many
branches. Examples include the distribution line carrier network, the digital subscriber loop
with bridge taps, and certain local area network configurations. The transmission line
network usually introduces severe magnitude and phase distortion resulting in the
degradation of bit error rate performance in digital transmission systems.

In this paper we present a program for computer modeling and simulation of complex
transmission line networks. The network is represented in the computer by a recursive
binary tree data structure. Using recursive programming techniques, the node voltage
current, and impedance at each node within the tree structure is computed. In this manner
the frequency response of the network, from the source node to the receiving node is
computed. The impulse response or the pulse response of the network is then calculated
from the frequency response using the Fast Fourier Transforms.

Computer programs for modeling transmission line networks have been written using
ABCD parameters [2]. In this paper a technique in which the frequency response at all
nodes within the network are obtained simultaneously is presented. The technique is also
suitable for the computer aided design and modeling of digital communication systems,
with complex transmission line networks.

II Transmission Line Networks
Consider the basic problem of simulating pulse transmission through a loaded transmission
line. Assuming that the pulse is band-limited with a cutoff frequency of fc , we can obtain
the pulse response by computing the inverse FFT of the complex multiplication of the
frequency response of the pulse and the transmission line network. Therefore, as a first
step in calculating the frequency response of the network, we analyze the network response
to a single sinusoid of frequency f0. Consider the loaded transmission line connected to the
generator Eg through a source impedance Zs as shown in Fig. 1 [3].

Figure 1. Generator connected to loaded transmission line

The voltage and current at any point on the transmission line can be obtained from the
following expressions:

©1987-2006 Sasan H. Ardalan 3 Transmission Line Networks

v(x) =
vs z0
z0 + zs

e-γx
1 + ΓLe

-2γ(L-x)

1 − ΓsΓLe
-2γL

(1)

i(x) =
vs

z0 + zs
e-γx

1 - ΓLe
-2γ(L-x)

1 − ΓsΓLe
-2γL

(2)

In the above expressions

γ = (r + jωl)(g + jωc) (3)

is the propagation constant and

z0 =
r + jωl
g + jωc (4)

is the characteristic impedance of the transmission line. The expressions for the source and
load reflection coefficients are,

ΓL=
zL -z0
zL+z0 (5)

Γs =
zs -z0
zs +z0 (6)

The expression for v(x) includes the superposition of all waves reflecting from the source
and load mismatches. This can be seen by a Taylor series expansion of (1)

v(x) =
vs z0
z0 + zs

[e-γx + ΓLe
-γ(L-x) + ΓL Γse

-γ(2L+x) +

ΓL
2
Γse

-γ(3L-x)+ΓL
2
Γs
2
e-γ(3L+x) + .. .] (7)

To obtain the shape of the pulse at the load, we evaluate v(L) at frequencies from f=0 to
f=fc in discrete steps where fc is the cutoff frequency of the band-limited pulse. The
number of points must be a power of 2 such that the inverse FFT may be used to obtain the
sampled pulse response at the load.

Consider now the case where the boundary voltage and current are known on a section of
transmission line. See Fig. 2. Evaluate v(0) in (4) and then compute.

©1987-2006 Sasan H. Ardalan 4 Transmission Line Networks

v(x)
v(0) = e-γx

1 + ΓLe
-2γ(L-x)

1 + ΓLe
-2γL

(8)

Also

i(x)
i(0) = e-γx

1 - ΓLe
-2γ(L-x)

1 − ΓLe
-2γL

(9)

Thus using (8) and (9) the voltage and current can be evaluated at any point on the
transmission line given the boundary voltage and current.

x
v(x), i(x)x=0 x=L

v(0)

i(0)

v(L)

i(L)

L

Figure 2. Section of transmission line with boundary voltages and currents

With the above preliminaries, we will examine the simple network in Fig. 3 and present a
methodology for its solution. In Fig. 3, the nodes have been labeled n1 through n5. To
solve this network, that is to obtain the voltage and current at each node and at any location
within the network, consider equation (1). This equation suggests that if the impedance at
node n1 was known then the voltage and current at node n1 can be calculated from the
generator and source impedance. Thus the first step is to obtain the impedance at n1. This
impedance is seen to consist of the parallel combination of the impedance looking into n5
and n2 from n1.

©1987-2006 Sasan H. Ardalan 5 Transmission Line Networks

Figure 3. Example transmission line network

These impedances can be obtained by noting that (Fig. 4),

Zin(x) =
1 + ΓLe

-2γ(L-x)

1 − ΓLe
-2γ(L-x)

Z0
(10)

Figure 4. Input impedance of a loaded transmission line.

Thus, the first step is to calculate the impedances looking into n3 and n4 from n2. The
parallel combination forms the impedance at n2. The impedance at n1 is thus calculated by
the parallel combination of the impedances looking into n2 and n5.

Therefore, the following methodology is suggested for solving the network. In the first
pass, starting from the three loaded end nodes, the impedances are calculated and the parallel
combination of these impedances at the parent node forms the parent node impedance.
Working backward in this manner, the impedance at the root node (n1 in the example) is
calculated. Using (1) the voltage and current at the root node n1 is calculated. Using (8)
and (9) and the boundary voltages and currents, calculated at the parent node, the voltage

©1987-2006 Sasan H. Ardalan 6 Transmission Line Networks

and current at each node in the network can be calculated. Note that the current at each node
is split into two currents flowing into each node.

In the next section, a computer program will be introduced which uses recursion and
recursive data structures available in C to solve complex transmission line networks.

©1987-2006 Sasan H. Ardalan 7 Transmission Line Networks

III Recursive Programming and Data Structures
To introduce the algorithm for solving a complex transmission line network, we first
consider the case where the network is limited to the binary tree structure shown in Fig. 5.
In the figure, the generator is connected to the root of the tree through a source impedance
Zs. The tree consists of nodes which are either parents or leaves. A leaf is a node which is
terminated on a load. For example, n3, n4, n6, n7, n9, n11, and n12. Parent nodes have two
branches. A left branch and a right branch. Nodes n1,n2, n5, n8, and n10 are parent nodes.

n1

n2

n3 n4

n5

n6

n7

n8
n9

n10

n11

n12

Figure 5. Transmission line network as a tree structure

In general each branch represents a transmission line with different characteristics and
lengths. Each section of transmission line is associated with the node on which it
terminates. Thus the section of transmission line from the generator to the root node n1 is
described in the data structure pointed to by n1. This concept is described below.

Each node has an associated data structure which occupies memory locations. A pointer
can be defined which points to the data structure in memory. As nodes are added to the tree,
memory is dynamically allocated for the data structure and a pointer is defined. Thus, for
the nodes of the network in Fig. 5 the following data structure can be defined in C.

struct node. {
struct node *left;
struct node *right;
struct node *parent;
char name [16];
float r,l,c,g;
float length
complex Z_Left;
complex Z_Right;
complex ZL;
complex node_voltage;
complex left_current;

©1987-2006 Sasan H. Ardalan 8 Transmission Line Networks

complex right_current;
complex input_current;
complex Z0;
complex gamma;.

}

Within the data structure definition are three pointers to data structures of the same type.
Thus the data structure is recursive. Two pointers point to the left and right nodes while the
third pointer points to the parent node. Three cases are immediately evident. If the node is
a leaf then the left and right node pointers are NULL. Otherwise, they will point to the left
and right child nodes attached to the node. If the node is the root node, then the pointer to
the parent will be NULL.

The other data types within the structure represent data necessary to describe the node.
These can be classified into two groups. One group defines the name of the node and the
characteristics of the transmission line (e.g., r,l,c,g and Z0 and g). The other group
represents data which are calculated and depend on the network. These include the voltage
at the node, the current flowing into the right and left nodes, and the impedances looking
into the nodes.

It is very convenient to access data in a data structure using pointers to data structures. For
example, to assign the variable Z the value of the characteristic impedance at the node
pointed to by np we write,

Z = np -> Z0

To access the characteristic impedance of the left child node of the node pointed to by np we
write,

Z = np -> left -> Z0

At this stage, we will describe recursive functions which are used to compute the
impedances, voltage and currents at each node. First we introduce two methods for
traversing tree data structures.

IV Traversing Trees
There are general methods for traversing trees [4]. We will apply two of these methods to
solve the tree network.

4.1 Postorder Listing

Postorder traversing of trees is illustrated in Fig. 6. This method is useful in the first pass
needed prior to solving for the voltages and currents of the network. As pointed out earlier
the impedances at each node must be computed. Thus in Fig. 6, the impedance at 3 is the
parallel combination of the impedances of the loaded transmission lines 1 and 2. Similarly,
the impedance at 6 is computed from 4 and 5. Once the impedance of 3 and 6 are
computed, the impedance at 7 can be calculated and so on. Careful study of the figure will
show that the numbering schemes corresponds to the order in which the impedance
calculations must be carried out. This order of traversing the tree is termed postorder
listing. The method is summarized below [4]:

©1987-2006 Sasan H. Ardalan 9 Transmission Line Networks

(1) If a tree is composed of only a single node, the post order listing consists of just that
single node.
(2) If a tree consists of more than one node, the postorder listing consists of the postorder
listing of each subtree, in left-to-right order, followed by the root.

13

7

1 2

3 4

5

6

8

9
10

11
12

Figure 6. Post-order traversing of tree for impedance calculations

4.2 Preorder Listing

This method is used in the calculation of the voltages and currents at each node once the
impedances have been determined. Preorder listing is illustrated in Fig. 7. Thus, once the
boundary voltage at node 1 is known, the voltage at node 2 can be computed (since the
impedance at 2 is also known from the first postorder traversing in computing the
impedance). From 2, the voltage at 3 and 6 can be computed and so on. The preorder
listing method is summarized below [3]:
(1) If a tree is composed of a single node, the preorder listing consists of just that single
node.
(2) If a tree consists of more than one node, the preorder listing consists of the root,
followed by the preorder listing of each sub tree in left-to-right order.

©1987-2006 Sasan H. Ardalan 10 Transmission Line Networks

1

2

3

4 5

6

7

8

9
10

11

12

13

Figure 7 Pre-order traversing of tree for current and voltage calculations

V Recursive Calculation of Network Impedances
The following C code presents a recursive function that calculates the impedance at each
node using a post order traversing of the tree structure

(1) Complex calculate_impedance (root)
struct node * root;.

 {
(2) if ((root-> left == NULL) && (root -> right == NULL)) {

/*
 * we are at a leaf
 * calculate impedance a distance root ->length away from theload, root ->ZL
 * calculate reflection coefficient at load
 */

rcl = calc_rcl (root-> ZL ,root -> Z0);

return (line_impedance (rcl, root -> Z0,

root -> gamma,root -> length);
}

(3) root -> left_impedance = calculate_impedance (root -> left);
root -> right_impedance = calculate_impedance (root -> right);
/*
 * calculate parallel combination of left and right

 * impedance
 */

(4) root ->ZL = Z_impedance_parallel (root -> left_impedance,

root-> right_impedance);
rcl = calc_rcl (root ->ZL, root -> Z0);

(5) return ((line_impedance(rcl, root ->Z0 , root -> gamma,

 root->length));
}

Function explanation:.

©1987-2006 Sasan H. Ardalan 11 Transmission Line Networks

(1) The function argument, root, is a pointer to a node within the tree. The function returns the
impedance "looking into a node," and it is complex.
.
(2) The function checks to see if the node is a leaf. If it is, then it calculates and returns the
impedance looking into the leaf node. This is one of the terminating conditions of the recursive
function. In other words, once a leaf node is reached, the function returns. The function
line_impedance () calculates the impedance based on equation (10)

(3) If the node is not a leaf, then the function recursively calls itself by passing the left branch
node pointer. After returning the impedance looking into the left node, the function is
recursively called to calculate the right branch node impedance

(4) Once the left and right impedances at the node are known, the parallel combination is
computed. This produces the total node impedance.

(5) At this point the impedance looking into the node is computed and returned by the function.
This is also another terminating condition.

After this function is called, the impedances at all nodes are stored in the data structures pointed
to by each node within the network.

VI Recursive Calculation of Node Currents and Voltage.
After the function calculate_impedance (root) is called, each node contains the terminating
or left and right branch impedance. The next recursive function, calculates the total current
flowing into each node including the left and right branch currents. The function makes use
of equation (9) to compute the node current I(L) based on knowledge of the boundary
current I(0). The function performs a pre-order traversing of the tree network.

(1) calc_current (root, i_input)
 struct node * root;
 complex i_input;
 {
(2) complex line_current();

/*
 * evaluates boundary current based on Eq. (9)
 */
 complex calc_left_current ();
 complex calc_right_current ();
/*
 * calculate the total node current based on equation (9)
 * i_input is the boundary current corresponding to I(0) in
 * the equation
 */

(3) root -> input_current = line_current (root, i_input, root ->ZL ,

root -> length);
(4) if (root -> left ! = (struct node *) NULL) {

root -> left_current = calc_left_current (root -> left_impedance,
root -> right_impedance, root -> input_current);

 calc_current (root -> left, root -> left_current);
}

(5) if (root -> right ! = (struct node *) NULL) {
root -> right_current = calc_right_current (root -> left_impulse,
root -> right_impulse, root _> input_current);
calc_current (root ->right , root-> right_current);
}

Explanation:

©1987-2006 Sasan H. Ardalan 12 Transmission Line Networks

(1) The root argument is a pointer to the current node, i_input is the complex boundary current
corresponding to I(0) in equation (9). That is, it is the total current flowing into the transmission line
associated with the node.

(2) The function line_current () computes the current I(L) in equation (9). The functions
calc_left_current () and calc_right_current (), calculate the currents flowing into the left and right
branches.

(3)This operation calculates I(L) and stores it in the data structure of the node. Note that since this is
a recursive procedure for traversing all the nodes of the tree, this operation will occur for each node.

(4) If the left branch is not a termination, then recursively call the function by moving to the node
attached to the current node, root. However, first compute the boundary current I(0) flowing into the
node, in this case left_current.

(5) The same as in step 4 but for the right branch.

After this procedure is called, all node data structures will contain the total current, and the left and
right currents. Note that when the procedure is first called, i_input is the total current flowing from
the generator into the network. It is computed based on equation (2).

VII Computer Simulation Results

7.1 Accuracy of Modeling Continuous Taper with Cascaded Sections

The purpose of this experiment is to determine whether the results produced by
TranTopCalc for a transmission line with a tapered characteristic impedance converge to
the true solution as the number of sections is increased. In addition, it is desired to
determine the accuracy to be expected in a given simulation as a function of the number of
sections used in TranTopCalc. The following was done jointly with Gary Ybarra at Duke
University while he was at NC State.

Consider the transmission line below with an exponentially tapered characteristic
impedance.

Z0
Z(x)

L

ZL

x=0 x=L

x

In our simulation we used a source impedance of 100Ω and a load impedance of 500Ω.
Also, the total length is L=10m. We used sections of two wire cable with geometry below.

©1987-2006 Sasan H. Ardalan 13 Transmission Line Networks

d

D
Figure 8

The characteristic impedance is,

 Z0 = 120 ln(2D
d)

For the continuous exponential taper

ln Z = xL ln ZL
(We sincerely apologize for using the symbol “L” for Load, inductance, and Length,
hoping the context will provide identity).

The exact differential equation relating the reflection coefficient to location along the line is
(Riccati equation, see R.E. Collin, Foundations for Microwave Engineering, page 252)

dΓ
dx = j2βΓ - 12 (1- Γ2) d ln ZL

dx

The exact solution to this differential equation for the input reflection coefficient for the case
of an exponential taper is

Γi = A sin (BL/2)
B cos (BL/2) + j 2β sin (BL/2)

A = ln ZL
L , B = 4β2 - A2

In order to test our program TranTopCalc, we cascaded sections of two wire transmission
lines. TranTopCalc requires values of inductance L and capacitance C.

L = Z0
vc

 z
L
 x
L

C = 1
vcZ0

 z
L
- x

L
 where vc is the velocity of light in free space.

Figure 9 shows a comparison of the results from TranTopCalc and the exact solution to the
Riccati equation. The best comparison is in the Figure 10 which is a “ZOOMED” view
of the figure. A simulation was performed with 500 sections and the result could not be
distinguished from the exact solution. The conclusion is that TranTopCalc produces the
exact solution asymptotically as the number of sections is increased. The reason for this
asymptotic exactness is that TranTopCalc includes the effects of all reflections, not a
simple approximation where second and higher order reflections are neglected.

©1987-2006 Sasan H. Ardalan 14 Transmission Line Networks

0.0

1.0

2.0

3.0

4.0

5.0

0 5 10 15 20 25 30

No
rm

al
iz

ed
 In

pu
t

Im
pe

da
nc

e

Theta, Radians

Exponential Taper
Exact versus Computer Model (PropMod)

500 Sections
Exact
100 Sections
20 Sections

Figure 9.

0.70

0.80

0.90

1.0

1.1

1.2

5.5 6 6.5 7 7.5 8 8.5

No
rm

al
iz

ed
 In

pu
t

Im
pe

da
nc

e

9
Theta, Radians

Exponential Taper
Exact versus Computer Model (PropMod)

500 Sections
Exact
100 Sections
20 Sections

9.5

20 Sections

100 sections

Exact
500 Sections

Figure 10.

©1987-2006 Sasan H. Ardalan 15 Transmission Line Networks

7.2 Double Stub Tuner Modeling and Simulation
The following double stub tuner is described in [5]. The double stub tuner matches the
load to 50 Ohms. In modeling and simulating this network, we will use the coaxial
transmission line. The transmission line parameters are for a 50 Ohm characteristic
impedance. The network is matched at 10MHz. The wavelength is 20m.

0.125λ
100+j100
Load

50 Ohms

n1

src

n5(l=0)

n2

n3

n4

Figure 11

Figure 12 Capsim® Graph of Double Stub Tuner Based on ASCII Description

The network is described in TranTopCalc using the following topology (stored in an
ASCII file):

n1 n2 n3
n3 n4 n5
n2
n4
n5
end
n1 coax1 30
n2 coax1 1.76 0 0
n3 coax1 2.5
n4 coax1 6.6 0 0
n5 R100_L0.0000015915 0 open

©1987-2006 Sasan H. Ardalan 16 Transmission Line Networks

Not e that the lengths are in meters based on the 20m wavelength. The load at 10MHz,
100+j100 is modeled using lumped circuit parameters in node n5 :
R100_L0.0000015915.

Figure 13 Coax with Four Parameters

R L

C G

Figure 14 Lumped Circuit Element

#19m 0.053437723 5.530183e-7 5.157361e-11 1.031472e-9
#22m 0.10749682 5.405909e-7 5.157361e-11 1.031472e-9
#24m 0.17025507 5.903004e-7 5.157361e-11 1.031472e-9
#26m 0.27340231 6.213688e-7 5.157361e-11 1.031472e-9
coax1 0.001 0.0035 2.25 0.001
balsh1 0.001 0.0035 2.25 0.002
wireabg1 0.001 0.1 2.25 0.0
paral1 0.001 0.01 2.25 0.0

Figure 15 Contents of the File trans_types.dat with
Transmission Line Type Parameters

The performance of the double stub tuner is shown in Figures 16-18. The VSWR is
plotted against the frequency (+- 10% of 10MHz).

©1987-2006 Sasan H. Ardalan 17 Transmission Line Networks

This result was obtained using TranTopCalc with integrated TCL which makes all
calculations of the network including setting frequency and node parameters available
through TCL commands. The Appendix lists the TCL script used to calculate the
variation of VSWR versus length.

Finally, Figure 19 shows the impulse response of the double stub tuner. The sampling
rate is 1GHz.

Figure 16

©1987-2006 Sasan H. Ardalan 18 Transmission Line Networks

Figure 17

©1987-2006 Sasan H. Ardalan 19 Transmission Line Networks

Figure 18

©1987-2006 Sasan H. Ardalan 20 Transmission Line Networks

Figure 19 Impulse Response at Node n1 for Double Stub Tuner Sampling Rate 1GHz.

VIII Conclusions
In this technical report, a computer program is described which simultaneously solves for all
nodes within complex networks of transmission lines. A tree data structure was introduced
for representing the network in the computer. Recursive procedures were presented for
traversing the tree data structure to compute the impedance, voltage and current at each node
within the network. Simulation results were then presented in which the impulse response
of a test network composed of transmission lines of various characteristics and lengths was
computed. The impulse response was then related to the network in terms of the predicted
reflections and delays.

The program efficiently solves complex transmission line networks and has applications in
the area of Computer Aided Design (CAD) of digital communication networks. Specific
applications include the Distribution Line Carrier Network, the digital subscriber loop, and
Local Area Networks.

IX References
[1] Sasan Ardalan, Susan Alexander, Ken Shuey, Computer Modeling and Analysis of
Complex Transmission Line Networks, Center for Communications and Signal Processing,
North Carolina State University, 1987

[2] D.G. Messerschmitt, "Transmission line modeling program written in C,"IEEE Journal
on Selected Areas in Communications,Vol. SAC-2, pp. 148-153, January 1984.

©1987-2006 Sasan H. Ardalan 21 Transmission Line Networks

[3] Dworsky, Lawrence N, Modern Transmission Line Theory and Applications,John
Wiley and Sons, Inc., 1979.

[4] Gerald E. Sobelman, David E. Krekelberg, .Advanced C Techniques and Applications,
Que Corporation, Indianapolis, Indiana,, 1985.

[5] Robert Grover Brown, Robert A. Sharpe, William Lewis Hughes, Robert E. Post, Lines,
Waves, and Antennas, Second Edition, Ronald Press Company, 1973 .

©1987-2006 Sasan H. Ardalan 22 Transmission Line Networks

X Appendix

TranTopCalc TCL Code for Varying Length of Stub n2 in
Double Stub Tuner

Transmission Line Topology Calculation and Analysis (TranTopCalc)
Command Tool Scripts
Copyright (C) 2006 Sasan H Ardalan
#
This script is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
#
This script is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
#
You should have received a copy of the GNU General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
http://www.xcad.com
Raleigh, North Carolina
#

#
This is a double stub tuner. At node n1 we have a match.
node n2 is the second stub near the generator
At 10MHz the network is matched.
#
in the following script we change the length of the stub n2
by +- 10% around the length where a match is acheived.
100 points are calculated.
results are stored as follows.
The complex input impedance is stored in a complex vector
It is stored in a filex as complex numbers (a+bi)
The VSWR and Length are stored in a list.
This list is later stored in a file as two columns
#

#
load the transmission line topology file "t.top"
#

tload t.top T
#print the topology
tpr $T
set the complex generator and generator source impedance
cx 1.0 0.0 g
cx 50.0 0. zs
#calculate all nodes at 10MHz and store the impedances, z0, gamma,
and current for each node
tcalc $T 1e7 $g $zs timp tcur
#print total input impedance and current (complex scalars)
vpr $timp
vpr $tcur
get the length of the stub n2
ngetlength $T n2 n4len
#calculate +-10% and dlength

©1987-2006 Sasan H. Ardalan 23 Transmission Line Networks

set lenBegin [expr $n4len -0.1*$n4len]
set lenEnd [expr $n4len + 0.1*$n4len]
set dlen [expr ($lenEnd-$lenBegin)/100.0]
#create complex and real vectors to store results (much more efficient than lists)
vcxcr zvlen 100
vcr zmag 100
get z0 and gamma (propagation constant) to use in VSWR calculation
nz0gamma $T n1 z0 gamma
initialize list to store results (in addition to storing in vectors)
set results [list {}]

puts "Iterating over length"

for { set i 0 } { $i<100 } {incr i} {
 set len [expr $lenBegin +$i*$dlen]
 #change the length of the stub
 nsetlength $T n2 $len
 #recalculate the network for new length
 tcalc $T 1e7 $g $zs
 # store all the computed values for node n1 (left right impedance, current)
 # the variables are automatically created
 nvalues $T n1
 # compute total inpedance at node n1 (variables $n1_zl and
 # $n1_zr were automatically created in the previous command)
 zpar $n1_zl $n1_zr zt
 vpr $zt
 #store the input impedance at n1 in the complex vector $zvlen (z versus length)
 vcxset $zvlen $zt $i
 #get the magnitude of the impedance
 cxgetpolar $zt zmagval theta

 #compute reflection coefficient
 rflc $zt $z0 rflc_n1
 #compute vswr
 vswr $rflc_n1 vswr_n1
 #store in real vector
 vset $zmag $zmagval $i

 #store vswr in list with length
 lappend results [list $len $vswr_n1]
}

#print resulst of input impedance
vpr $zvlen 14.6f zin_vs_len.dat -twocol

#
create a file to store the vswr vs length
#
puts "Storing results in vswr.dat"
set out [open vswr.dat w]

puts $out [llength $results]
#puts -nonewline $out "#Length"
#puts -nonewline $out "\t"
#puts $out "MagZin"

foreach value $results {
 puts -nonewline $out [lindex $value 0]
 puts -nonewline $out "\t"
 puts $out [lindex $value 1]
}
close $out

