Copyright © 1984 IEEE. Reprinted from:

David G. Messerschmitt, " Structured Interconnection of Simulation Programs”, 1984 |IEEE
GlobeComm. pages 808-811.

Thismaterial is posted here with permission of the IEEE. Such permission

of the IEEE does not in any way imply |EEE endorsement of any of XCAD's
products or services. Internal or personal use of this materia is

permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works

for resale or redistribution must be obtained from the IEEE by sending a
blank email message to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of
the copyright laws protecting it.

Structured Interconnection of Simulation Programs

by

David G. Messerschmitt
Department of Flectrical Engineering and Computer Sciences
University of California
Berkeley, Ca. 94720

ABSTRACT

A standardized and structured approach to the inter-
connection of different program ymnodules involved in a fune-
tional simulation of a communications or signal processing
system is described. This methed is an improvement on the
fifu interconnection described earlier [1]. in that it retains
the advantages of that approach while at the same time sim-
plifying the programming. This interconnection we call a
“random access buffer”, and allows the programmer to
access samples of input and output time sequences a very
natural manner.

1. Introduction

In the structured functional simulation of communica-
tions and signal processing systems, there is a need for a
standardized interface between software modules. This
enables rnodules written by different programmers to be
effortlessly interfaced, and enables a library of modules
which can be freely interconnected to be accumulated.

The first version of BLOSIM, a structured functional
simulation program, used a standardized first-in first-out
(fifo) buffer to interconnect modules [1]. This interface is
similar to that used in operating systems, such as the UNIX
piping and 1/0 redirection operations.

The fifo in BLOSIM has proven with experience to satisfy
two goals: it provides a standardized interface and it has
proven to be very flexible and general, handling every inter-
face problem that we have encountered.

Experience with BLOSIM has shown, however, that the
fifo interface introduces some programming difficulties. In
particular, in some situations considerable attention must
be paid to details unrelated to the system being simulated,
such as the overflow and underflow of fifo buffers. While it is
tempting to say that this is the price that must be paid for
the structured approach of BLOSIM, a better approach is to
look for a method of interconnection which retains the
advantages of the fifo, but simplifies rather than compli-
cates the programmers task. This paper describes an inter-
connection approach which hopefully accomplishes that
goal.

The following are the burdens placed on the program-
mer by the fifo interface:

1. The programmer must detect when an input fifo emp-
ties, and do a normal return to BLOSIM.

2. Similarly, the programmer must detect a full output
fifo, and return.

3. Atypical module, which is called a STAR in BLOSIM, gen-
erates output samples on the basis of a set of current

and past input samples. With the fifo, the programmer
must store and manipulate past input samples, which
are discarded from the input fifo as soon as they are
accessed. .

4. Where a block is included in a teedback loop, it is
necessary in order for the simulation to get started for
the block to put out any samples it can before it
accesses input samples. For example, a delay block
can put out a number of zeros equal to the number of
samples of delay before reading an input fifo.

The first two problems are artifacts of BLOSIM and are not
factors in an operating system environment, where a pro-
cess is automalically suspended and its state saved when it
exhausts an input fife. BLOSIM does not do this, because
this operation is not supported by operating systems, and
therefore cannot be done in a portable fashion. Generally
code to perform this would be "dirty"”; that is, be specific to
a particular operating system and compiler.

This paper describes the block interconnection of a new
version of BLOSIM, the goal of which is to simplify the user's
programming task. This new version exploited the experi-
ence gained from extensive use of the previous version to
achieve the following goals:

1. Maintain the generality of BLOSIM, which enables it to
be used in virtually any simulation problem.

2. As one aspect of 1., continue to support synchronous
and asynchronous sampling, and in the former case
decimation and interpolation.

3. Retain the structured nature of the block interconnec-
tion, making the interfacing of diverse blocks effortless.

4. Define an interface which simplifies rather than compli-
cates the user's programmming task.

5. Define an interface which is referenced in a manner
natural for someone doing a simulation of a signal pro-
cessing or communication system.

This paper will deseribe the module interface in this new
version of BLOSIM, and give some examples. The remainder
of BLOSIM, including the hierarchical definition of blocks
and independent topology definition [1] are essentially the
same as the earlier version and will not be discussed here.

2. Random Access Buffer

The new block interconnection interface is called a ran-
dom access buffer. It is similar to a fifo in that new samples
are added to the "head"” of the buffer, and old samples are
removed from the "foot" of the buffer. However, it differs
from a fifo in that the user program can access or even
change any sample in an input or output buffer (hence the
term 'random access").The random access buffer also
separates the incrementing of time from the reading or
writing of samples to the buffer. What follows is a descrip-
tion of the random access buffer.

Any given buffer is connected to two blocks. To one of
those blocks it appears as an "output buffer” and is the
place where the block puts samples that it generates. To
the other block it is an "input buffer”, where the block gets

24.1.1

CH2064-4/84/0000-0808 $1.00 © 1984 |EEE

its input samples. The interface of a block to an input
buffer and an output buffer are slightly different. Figure 1
illustrates a programrners view of an input random access
buffer. It consists of "cells” into which another biock wrote
data. Each cell can consist of an arbitrary data structure,
such as for example a single floating point nunber, or a
floating and a fixed number, etc. Conceptually. each cell
contains some data corresponding to a single time incre-
ment of the sirnulation. The function pin{in# k), where "ing”
is the number of the input under consideration, returns a
pointer to a cell in the buffer. The second parameter "k”
specifies which cell is accessed, where k=0 corresponds to
the "current” input, and for example k=5 corresponds to
five time increments in the past. Using this poirter to the
desired cell, the block can read the data in the cell or
change a data value in the cell. Generally the buffer will
include some cells corresponding to future time incre-
ments, and BLOSIM will not allow a block to access these
cells (marked "forbidden" in the figure). One implication of
this rule is that a block cannot increase the size of one of its
own input buffers. '

POINTERS TO CURRENT
AND PAST CELLS

—_—
N
PIN (IN#,5) PIN(IN# Q)
} |
VI
T
v —_— '] -
PAST CELLS CURRENT FORBIDDEN

CELL ACCESS TO
FUTURE CELLS

Figure 1. Programmers view ‘of an input random access
bufler.

Time is incremented by a second function it(in#), which
moves the current cell forward in the buffer by one cell. If
there are no more cells in the buffer, it{in#) returns a "0"
value, which the block can test and return to the BLOSIM
kernal. If the current cell is the last cell in the buffer after
the time increment, it() returns -1; otherwise it returns +1.

The programmers view of an output random access
buffer is shown in Figure 2. The function pout{outf k)
returns a pointer to an output cell, where "out#” is the
number of the output and "k" is again referenced to the
current’ cell By definition, the current cell is the last cell
that was written by the block, and hence the last cell in the
bufer. If the block wishes to write another sample on the
output buffer, it calls the function pnew(out#), which adds
another cell to the end of the buffer and returns a pointer to
this new cell. An output buffer cannot overflow; that is,
another cell can always be added. (In fact BLOSIM places an
installation defined limit on the number of cells that can be
created, and the programmer must stay within this limit.)

POUT(OUT #,5) POUT(#,0)
{ }

~ S ——

PAST CELLS CURRENT
CELL

Figure 2. Programmers view of an output random access
buffer.

These programmer views of an input or output random
buffer fit very naturally into a typical simulation because
the programmer references input samples relative to the
current time (the variable "k is essentially the same as the
operator z*). The block calculates the current output(s)
on the basis of the current and past inputs, and then incre-
ments time. In addition, decimation and interpolaticn and
asynchronous sampling rates are very natural to imple-
ment. The next section will give sorme programming exam-
ples.

In filling an output buffer, BLOSIM minimizes memeory
usage by retaining only as many past cells as is necessary.
In addition, BLOSIM automatically determines when it is pos-
sible to put out samples without reading an input bufler, an
important feature in getting the simulation started. These
two features require that the user specify the minimum and
maximum delays accessed by a block in its input fifos, and
the maximum delay accessed in its output fifos. These
parameters are set by the functions m'mjn_gigln#) and
max_in_d(ing) for an input buffer, and max_out_d(outf) for
an output buffer. These values, if not set, default to zero.

3. Pregramming Examples

A few simple programuming examples which illustrate
the use of a random access buffer interface will be given. To
avoid having to explain all the details of BLOSIM, these pro-
grams will leave out a small amount of initialization code
which is necessary. -~

Perhaps the simplest block models a delay z™, a
library routine which is used in almost every simulation.
Here is the routine for the case n=10 (in practice n would
be a parameter): ‘

float. *pin(), *pout(), *pnew(});

#define x(4) *pin(0,4)

#define y() *pnew(0)

delay() § [
: if(start{)) max_in_d(0)=min_in_d{0)=10;
while(it(0)) §
y{} = x(10});
{ return(0);

This program is written in C, and the syntax "*pnew” means
the contents of the memory pointed to by “pnew”. We first
declare the contents of all the buffers to contain floating
nummbers, and then deflne the contents of the input buffer
delayed by 10 samples and the new sample on the output
buffer to be x(10) and y() respectively using the macro sub-
stitution capability of the C compiler (this is strictly for rea-
dability of the code). The function start() returns "true" if
this is the first'call to delay(), at which time the minimum
and maximum delays are set to 10. The remainder of the
routine simply increments time, and as long as this is suc-
cessful puts out the sample in its input buffer 10 cells from
the current cell. Even if the block connected to the input of
the delay block has not executed yet, this block will put out
10 zeros because of the details of the random access buffer
irnplementation discussed in the next section.

As a slightly less trivial example, here is the code
necessary to simulate an IIR digital filter

Y = ga\'zk-i + ibiyk—-i
i=0 i=1

where the input to the filter is z; and the output is y;:
foat *pin(), *pout(}), *pnew():
#define x§A) *pin(0,A)
#define y(A) *pout(0,A)

iir(} §
float yout;
int i;

24.1.2

809

if(start()) ¢
max_in_d{0) = 10;
;na)g_gut_d(()) =5;

while(it{0)) § el e e
yout = (;
for(i=0;1<=10;++i)
yout += afi] * x(i);
for(i=1;i<=5;++i
yout += bli] * y(i);
*pnew(C) = yout;

returnéo);

Note how the random access bufler has simplified the pro-
gramming by eliminating the necessity of declaring any
arrays containing the samples, shifting the samples through
those arrays, and so forth, as might be required in writing a
program from scratch. In eflect, these services are per-
formed by BLOSIM itself.

A final example will illustrate how the random access
buffer supports asynchronous sampling rates. Suppose that
a signal is represented by samples z;, which are its samples
at times £, and we wish to find the samples at times §;. This
problem arises quite often in simulations of communication
systems, for example in the acquisition of phase locked
loops or in full-duplex data transmission systems with asyn-
chronous streams in the two directions. If the desired sam-
ples are called y;, and g(¢) is the interpolation function
{usually the impulse response of a low-pass filter), then the
desired samples are given by

Y; = 2%9(5;' —t)
3

This is naturally quite a bit more difficult than the previous
synchronous examples, bul considerably simplified because
of the buffer interface.

A block which performs this task is shown in Figure 3a.
It has as inputs z;, the associated time since the last input
Aty . and As;. The time increments since the last sample are
used in place of the absolute times for accuracy and to
avoid overflow.

T

Aty =“b5 - tya) —

(o]

_.yi

asj =(s, —s;_;) —2

(o) Asynchronous Interpolotion GALAXY

Figure 3a. “An block which performs asynchronous interpo-
lation. :

In the spirit of structured programuming, we break this
block into appropriate pieces, and look for opportunities to
solve a more general problem. In particular, the block in
Figure 3b is very useful in realizing the interpolator of Fig-
ure 3a. This block takes an arbitrary number of inputs,
each input a sample value and a time since the last input,
and puts the samples out in order of time occurance. In
addition to the ordered sample values, it puts out the time
since the last output and the number of the input from
which that output sample came. [n the interest of space, we
will show only the routine order() which implements this
function. This block can be used to conveniently interleave
the output sample times s; with the input times £, and a
second block which calculates the cutput samples y; is then
straightforward.

{at,x} —o0
order() ot—{2,atx}

{at, x] -

(b) STAR which orders Asynchronous Inputs
Figure 3b. A partitioning of the function of Figure 3a.
The routine is shown below:

order({) § .
/* declare variables */ -
int input, input_mmin;
float dt_min; .
struct § ~
float dt; -
flcat x;
} *pin():
struct §
intl;
float dt;
float x;
} *pout(}:

/* set maximum delays which are nct 0 */
if(start())
for(input=0;input <m;input++)
max_in_d(input) = 1;

/* process inputs until an input buffer is empty */
while{) § :

/* find minimum time increment on input */
- dt_min = pin(0,0)->dt;
input_min = 0;
for(input=1;input <n;input++)
if{pin(input,0)->dt < dt_min) §
dt_min = pin(input,0)->dt;
input_min = input;

/* increment time on that input,
return if input would then be empty ./
if('it(input_min)) return(0);

/* increment time on output, then put out time and
sample */
; pnew(0);
pout(0,0)->1 = input_min;
pout 0,0;->dt = pin{input_min,1)->dt;
pout{0.0)->x = pin(input_nin,1)->x;
/* subtract time increment from all inputs*/
for(input=0;input <n;input++)
it(input != input_min)
pin{input,0)->dt -= dt_min;

Note first of all that both pin{) and pout() have been
declared to be pointers to structures containing two or
three relevant variables. This ability to group variables
together in passing through randomn access buffers between
blocks is very convenient. The main routine is irnbedded in
a white() statement which executes until the internal test
detects an empty input bufler and does a return. The con-
vention is that the input times represent the time since the
last oufput sample, or initially the times since the beginning
of the simulation. First the input times are checked, and
the minimum is found. The sample value and associated

24.1.3

time corresponding to that minimum is then output.
Finally, the tirme increment which was output is subtracted
from all the input times residing in the input buffers. This
illustrates that it is sometimes very handy to be able to
modify the contents of an input bufler! In this case, it
avoids the declaration {and saving as a state) of iniernal
variables to the routine. In contrast to the earlier version of
BLOSIM, it is frequently not necessary to declare internal
state variables.

4. Implementation of Random Access Buffer

The random access buffer is implemented in BLOSIM
using a circular double-linked list data structure as shown
in Figure 4. The cells are organized in a circle, and as time
is incremented the data is stationary but the pointers riove.
The pointer pout(out#,0) points to the last data sample gen-
erated by the block connected to the input of the buffer,
while pin(in#0) points to the current data sample being
accessed by the block connected to the output of the buffer.
The shaded blocks are therefore forbidden for access by the
latter block until time is incremented. There is another
pointer "poldest” which points to the oldest sample that it is
‘necessary to retain in the bufler (as determined by
max_out_d() and max_in_d(}). As new samples are added to
the buffer, pout() is moved around the buffer until it
reaches poldest. When that happens, more memory is allo-
cated to the buffer since the buffer is effectively infinite in
size.

. FORBIDDEN ACCESS

b AS INPUT BUFFER

PNEXT
l
\ PLAST »/
USER

0ATA
STRUCTURE

Figure 4. Implementation of a random access buffer.

Each cell in the buffer includes, in addition to the user
data, two pointers which point to the two adjacent cells.
When additional memory is added, the four pointers in the
two cells on both sides of this new memory are simply re-
linked to this memory. This data structure thus never
requires the movement of data samples, and enables the
size of the buffer to by dynamically increased very simply.
One disadvantage is that to find a sample with some particu-
lar delay, it is necessary to move through the bufler once
cell at a time. To minimize the time spend doing this search,
the starting point is always at the last reference to the
buffer (pointed to by "plast” with associated delay "delay").
This is efficient because most programs access delays in
ascending or descending order.

5. Conclusion

Extensive experience with the new bloc!(i.nterface in
BLOSIM has not yet been accumulated, but it is apparent
from the examples that the programming of block routines
bas been considerably simplified. The importance pf an
interface such as this is that the larger the community of
users who will adopt a common interface for software
modules, the greater the ease with which software can be

interchanged and duplication of effort can be avoided.
Frobably the greatest weakness of the interface described
here from this point of view is its implementation in C, while
most simulation software is currently written in FORTRAN.
Unfortunately, it would be difficult to reproduce this
software interface in FORTRAN.

REFERENCE

1. D.G. Messerschmitt, "A Tool for Structured Functional
Simulation”, /EEE Trans. on Special Topics in Com-
munications, Jan. 1984.

24.1.4

811

