Copyright © 1984 IEEE. Reprinted from:

David G. Messerschmitt, "A Tool for Structured Functional Simulation”,
|EEE Journal on Selected Areasin Communications, Vol. SAC-2, NO.1, January 1984,

pp.137-147

This material is posted here with permission of the |EEE. Such permission

of the IEEE does not in any way imply |EEE endorsement of any of XCAD's
products or services. Internal or personal use of this materia is

permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works

for resale or redistribution must be obtained from the |IEEE by sending a
blank email message to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of

the copyright laws protecting it.

A Tool for Structured Functlonal
e Slmulatlon

IR |

DAVID G. MESSERSCHMITT, FELLOW,

Abstract —BLOSIM is & genénl purpose time-driven (as opposed to

. event-driven) simuiation language. It is written in C language, and is

: Madedbmﬂdenhiglﬂymenmfwﬂmw

making:peactical the of libraries of simulation routines which

" can be-reused and making multiprogrammer simulation efforts more practi-
. cal It.is #itten with the philosophy of not including any simulation

primitives: within the"langusge itself, but rather complete generality is
maintsinediby having the user provide these as C routines (cither coded
from scrasch or from a user-provided library). It includes as features a

 hierarchieal ‘specificstion of blocks, interconnection of blocks by first-in

first-out.buffers, the passing of parameters to blocks, multiple instances of

. bk)ch.lﬂlautomncscheduﬂngollheordadblockexemﬁon.lthm

c.'.

% Computcf%a:carcb Qpportunities

Computer Scxence. University o

Mamucdpt received Al t 15, 1983; revised September 10, 1983. This
researchmpportcdxby R'ﬁ"vmc, Advanced SM?cro Devices, Fairchild
Semicondoctor, Harns Scmiconductor, National Semiconductor, with a

t from the University of Cahfomm M:croelectroma and

artment o! Electrical

. Thy g and
o of California, Berkeley CA g

anthor is with the

P

-, .; i -

beentsedformw:iﬂh.ddngwuﬂ

8 I IN'monucnou

LOSIM, which is pronoumed “blossom," stands for

“block simulator,” and is a general purpose simula-
tion program for sampled data systems (or. systuns which
can be represented as sampled data systems). It'is a time-
driven (as opposed to event-driven) simulator, and hence is
cfficient for simulating systems which operate on data at-
regular time intervals. Such a simulation approach has
been called a “next-state simulator” [5}. BLOSIM can
casily accommodate systems with different samplmg fates
present at the same time, or systems thIL mternal asynch-
ronous samphng rates. .t Lo FRRRS

Cewe ey

0733-8716/84/0100-013730100 01934 IF.EE B L

138 IEEE JUUKNAL UIN DELEUIEW ARLAD LY VUMMIUNILA LIVIYY, YUL dAL-&, MV, L, JANUART 1704

The most common approach to simulations of this type
is to write a special purpose program (often in Fortran) for
the particular system being simulated. Often a structured
methodology is not used, with the result that the simulation
quickly deteriorates into hopeless complexity and the simu-
lation code is of no value in future simulation efforts.
Another alternative is to use one of the previously available
block or next-state simulation languages [5]-[8]. These
languages were written with the philosophy that many of
the elementary blocks often appearing in systems are pro-
vided as an integral part of the simulation language. This
approach suffers from inefficiency, as well as a lack of
generality since rarely does the language designer’s vision
extend far beyond his own simulation experiences. A third
approach is to write a general simulation program with
many system building blocks built in, a simplified user
interface, and the ability for the user to add custom
programmed blocks. Many of the papers in this 1ssue fall
into this latter category.

BLOSIM is quite different from these other approaches
to simulation. BLOSIM itself does not include internal
models for any particular system to be simulated; these
must be provided by the user. In this way complete gener-
ality is maintained, and the use of the program is not
limited by the designer’s choice of which models to include.
Of course, this has the disadvantage that the user must
provide modeling routines for the entire system, in a sense
making BLOSIM similar to writing a special-purpose simu-
lation program for the system. However, BLOSIM is de-
signed so as to encourage and make it easy for the user to
build a library of routines which can be used in future
simulations. '

Philosophically, BLOSIM is closest in approach to writ-
ing a special-purpose simulation program, and offers the
same advantages of efficiency and generality. At the same
time, it overcomes the deficiencies of many special-purpose
simulation efforts by providing a structured environment
for programming simulations. This structured environment
encourages the programmer to use highly structured pro-
gramming techniques, but without requiring any prior
familiarity with these techniques. This structured simula-
tion environment pays two major dividends. First, BLOSIM
* encourages the writing of simulation code for small pieces
of the system being simulated, and this code is written to a
single carefully defined interface. As a result, libraries of
routines which can be reused in future simulations can be
developed. Second, multiprogrammer simulation efforts
become relatively painless since routines written by differ-
ent programmers readily jnterface one another.

BLOSIM is also very natural to use for system imple-
mentors since it encourages them to divide the system into
small interconnected blocks in the same way that a system
is partitioned for implementation. The user then provides a
simulation program for each of these blocks, and in 2
separate routine a specification of the topology of intercon-
nection of these blocks. BLOSIM then handles the details
of the actual interconnection and execution of the block
programs. ‘

The key design choice in BLOSIM was the manner in
which the blocks are interconnected. Data samples output
from one block and input to another pass through first-in
first-out buffers (FIFO’s) implemented internal to
BLOSIM. This method of interconnecting the blocks is
similar to the communication method often used in operat-
ing systems, and has the important advantage that the
topology of interconnection of the blocks is completely
separated from the internal implementation of the blocks.
Thus, the programs implementing the blocks are written to
a standard interface to BLOSIM FIFO’s, and do not
interface each other directly. This interface is carefully
defined to hide the internal impelmentation of any particu-
lar block from other blocks, ensuring that the implementa-
tion of any block can be changed with minimal likelihood
that the remainder of the simulation will be affected. The
topology of interconnection of the blocks is specified in a
separate place, making it easy and trouble-free to add and
delete blocks, and generally make changes to the system
being simulated. Parameters can also be passed to the
blocks from the same place where topology is det"med
thereby specializing their functionality to a particular simu-
lation and making it sunple to try different combmatxons
of parameters.

It should be emphasized that a BLOSIM s:mulatwn
consists of a single executable program, and only depends
on the operating system for services like memory alloca-
tion, file access, etc. In particular, the interconnection of
blocks is internal to the program, and not through the
operating system. The use of the UNIX operating system
“pipe” and “fork” mechanisms for block interconnection
were considered in the early stages of design, but were
rejected because of the inefficiency which would resuit and
the limitation which would be imposed on the number of
blocks.

BLOSIM supports a hierarchical definition of blocks.
That is, it is simple to define new blocks which are made
up of specified interconnections of other blocks. In subse-
quent simulations, these higher level blocks are indis-
tinguishable from blocks impiemented directly by a user
program. In addition, muitiple instances of blocks are
supported; that is, the same block can appear as many
times as desired in a given simulation (usually with its
functionality specialized by setting different values for its
parameters). This is particularly convenient for simulation

" of systems which have a replication of similar or identical

functions (for example a systolic array or a system with
multiple filters). -.

BLOSIM makes many consistency checks during topoI-
ogy definition and execution, allowing it to detect and
correct many user programming errors. In addition,
BLOSIM has a narrative mode, in which it prints out on
the user’s terminal what it is doing at each step, allowing
the user to determine if the topology has been properly
defined and the user block routines are funcnomng prop-
erly.
BLOSIM is 1mplemented in C language [1}, and the
user-provided routines must also be written in C. Many of

e¥ MEODEIILIIMILL. JVUL FUR JLAULEURDL, & Witwasisa

the features of C discussed in a companion paper [4], and
particularly dynamic allocation of memory and recursion
were used extensively in the implementation of BLOSIM.
While it has not been tried, it should be possible to link
Fortran programs (for example, an FFT routine) to a
BLOSIM simulation in a UNIX operating system environ-
ment.

This paper describes BLOSIM in general terms; more
detail can be found in the user’s manual [2]. The sections
that follow describe BLOSIM from the general to the
specific. Section II gives an example of a BLOSIM simu-
lation, illustrating the capabilities and approach of the
simulation language. Section IIl describes in general fash-
ion the features of BLOSIM which affect the user. Section
IV discusses how the user specifies the topology of inter-
connection of blocks, and defines the hierarchical defini-
tion of blocks in BLOSIM. Section V describes how the
user programs the functionality of a block, and Section VI
briefly explains how parameters are passed to blocks. Sec-
tion VII mentions several enhancements to BLOSIM which
have been provided in response to user feedback, and
Section VIII gives a brief programminging example to give
the reader a better idea of how a BLOSIM simulation is
programmed. Finally, Section IX describes user experience
with BLOSIM and suggests extension of its capabilities.

II. ExaMpPLE OF A BLOSIM SIMULATION

This section illustrates by way of example the approach
that a programmer using BLOSIM uses to develop a simu-
lation. Fig. 1 shows & block diagram of a simulation which
could be performed using BLOSIM. The system being
simulated is a full duplex data transmission system, con-
sisting of two data transmitters, one at each end of the
system, a single data receiver (simulating both receivers is
not necessary), and the channel. A detailed description of
this type of system is given in [3]. For purposes of simu-
lation, as well as actual implementation, the system is
partitioned into a number of blocks. Section IV will il-
lustrate how each of these blocks can be further subdi-
vided. Each block is simulated by a user-provided program,
and BLOSIM combines these individual simulations into a
simulation of the entire system.

An example of muitiple instances of blocks is the filt()

_block in Fig. 1, which is used a couple of times where a
filtering function is required; another example is the block
transmitter(), which is used for both the near and far data
transmitters. Each instance of a filter is specialized by
passing an impulse response as a parameter, or alterna-
- tively the impulse response can be stored in a file and read
by the block routine from that file. As an example of the
latter, where filt() is used to simulate a transmission line
the companion program LINEMOD [4] can be used to
determine the impulse response of the transmission line,
which LINEMOD stores in a file. This same file can then
be read by a BLOSIM filter simulation block at run time to
provide an accurate simulation of the transmission line,

The most common method for interconnecting blocks in

i o 0 o o
CHANNEL FILTER
“FAR TRANSMITTER" F.LT Lre
TRANSMITTER() |! 9 m

["ECHO FILTER"O
FILT ()

"CHANNEL
AODER’

avot 3 |2

)

"ECHO DELAY
DELAY()

"NEAR TRANSMITTER"
TRANSMITTER ()

0

*CANCELLER"
CANCELLER ()|

Q 2

"NOISE GENERATOR"
NOISE {)

0
9 [*receIvER ADDER"|! O|"aNTI-ALIAS FILTER"O
ADD {) FILT ()

TO TRANSMITTER
OR INTERPOLATION
FILTER

"INTERPOLATION|O O["RECEIVER"[O O["ERRCR MONITOR"
FILTER” FILT () RECEIVER() ERROR ()

Fig. 1. BLOSIM simulation of a full-duplex data transmission system.

~
~

a simulation programmed without the aid of BLOSIM
would be to have each block routine obtain data from its
predecessor via a function (subroutine) call. This method
has several drawbacks, including an unfortunate imple-
mentation dependence of one block on another as well as
the undesirable embedding of the topology of interconnec-
tion in the routines themselves. In BLOSIM, the blocks are
connected using intermediate first-in first-out (FIFO)
buffers. These buffers are set up and managed by BLOSIM,
rather than the user programs.

This use of FIFQ’s serves several purposes. First, the
FIFQ’s provide a standard interface between blocks. A
given block is written to deal with a standard FIFO
interface, rather than directly with another block. This
standard FIFOQ interface serves to hide from the rest of the
blocks the internal implementation of a given block. Take,
for example, a filter block. It can be implemented, for
example, as a sample-by-sample recursion which takes one
input sample at a time and generates one output sample at
a time, or it can be implemented as a fast convolution,
which operates on a block of input samples to generate a
block of output samples. With the intermediate FIFO’s,
these details of internal implementation are completely
hidden from the blocks connected at the output. Further,
the connection of blocks by FIFO’s enables the use of
different, and even asynchronous and time-varying sam-
pling rates in the system. This will be illustrated in Section
11-B, and is extremely useful for the simulation of interpo-
lation, decimation, and the acquisition of phase-locked
loops. Finally, by having the user block routine interface to
BLOSIM-maintained FIFO’s rather than to other blocks,
the topology of interconnection can be specified in a single
topology definition routine, where it is simple to make
rearrangements and changes.

Fig. 2 illustrates, for the example of Fig. 1, how different
sampling rates can be accommodated. Important for this
particular simulation is the fact that even asynchronous
sampling rates can be accommodated. Fig. 2 i3 a simplified
block diagram of the full duplex modem, with the sampling
rates written next to the FIFO’s.

It is assumed that the “Data” block generates bits at rate
/£, in the local transmitter and f, in the remote transmitter,

NF

[3
SRy FO——
FILT
para (O . Fork
Fa -O-I Fa ECHO
NF,
CANCELLER -
O e
INTERPOLAT
DECISION ERPOLATE ADD -
F e, | -
B A ALTAS -
w, LT e CHAN ™
NF
A A FILT Q‘*nu'(?"”"‘

A B

Fig. 2. Sampling rates in asynchronous full-duplex data transmission.

and that these rates are asynchronous. At the output of the
local transmit filter, the bandwidth exceeds half the bit
rate, and thus the sampling rate must be greater than the
bit rate. Thus, assume that the sampling rate is N X f,, for
an integer N. In terms of the implementation of the filter in
BLOSIM, this means specifically that the filter block gen-
erates N output samples for each input sample. .

Similarly, the output of the remote transmit filter has
sampling rate N X f,. In the receiver, after the first “Add”
block, a superposition of both local and remote data
signals must be represented by the same sample stream. In
fact, the “Add” block, which simply performs a sample-
by-sample addition of the two input sample streams, re-
quires that they have the same sampling rate. Hence, there
is the need to change the sampling rate for the
asynchronously sampled remote data signal prior to its
connection to the “add” block. This service is performed
by the channel filter block, which has sampling rate N X f,
at the input and N X £, at the output. In simplistic terms
this means that the block generates f, /f, output samples
for every input sample on average. In practical terms, this
block is more difficult to program than a filter with syn-
chronous sampling rates, and requires a pair of additional
inputs which are the time intervals between adjacent input
and output samples.

This example illustrates how the most natural sampling
rate can be chosen at each block interface, rather than
choosing a common sampling rate for all the block inter-
faces (as is often done in simulations of this type). For
example, since the bits at the output of the “Data” block
are generated at rate f,, it is natural to choose a sampling
rate f, at the output, rather than, say, N X f.

It is important to note from this example that the
relative sampling rates in the system are completely con-
trolled by the internal implementation of the blocks. For
example, a doubling of the sampling rate results from the
input to the output of a block when the block generates
two output samples for every input sample. BLOSIM does
not check for the consistency of sampling rates in the
system; that is the responsibility of the programmer and
user of the block routines. :

1II. PROGRAM STRUCTURE

This section describes the structure of the BLOSIM
program itself, particularly as it relates to the user inter-

FIFQO MANAGEMENT

b3

BLOSIM KERNEL
USER USER
TOPOLOGY BLOCK
DEFINITION ROUTINES

Fig. 3. Program structure of 2 BLOSIM simulation. -

face. As shown in Fig. 3, the user provides two types of
routines, the topology and block routines. These routines
interface to BLOSIM (rather than directly to one another),
which consists of the kernel and the FIFO management
routines. ' ’

A. User Topoldgy Definition

A user-supplied “ topology definition” program specifies
the names of the blocks, the routine which implements
each block, and how the blocks are interconnected. Further
detail on this program is given in Section IV. The topology
definition routine is also able to pass parameters to the
blocks to specialize their function, a capability which is
described in Section VL.

B. User Block Routine

For each block in the system, the user must provide a
routine which defines the internal functionality. As ex-
plained in Section IV, there are two ways in which this
functionality can be specified. Of concern here is the
method in which the functionality is simply embedded in a
C program, called the “user block routine,” which gets
input samples from input FIFO(’s), and puts its generated
output samples into output FIFO(’s). In addition, the user
block routine can access environmental factors such as how
many input or output FIFO’s are connected to the block,
the number of samples currently on aa input or outpuf
FIFO, or the maximum number of samples an input ot
output FIFO can hold. B ;

Another service provided by BLOSIM is the permanent
storage of internal state variables for the block. It is
necessary for BLOSIM to store these state variables, rathes
than the “block routine” itself, since there may be multiple
instances of a given block routine, and it would be a
grievous error for them to share common state variables.

C. Other BLOSIM Services

Aside from the services described above, such as the
creation of blocks and their interconnection, this section
describes other features of the program of concern to the
user.

The FIFO management routines take care of the crea-
tion and management of FIFO’s. They keep track of the
number of samples on a FIFO, put samples on FIFO’s,
and take samples off FIFO’s. The storage for FIFO con-
tents is allocated dynamically at the time of FIFO creation,
so that there is no BLOSIM imposed limitation on the total
storage required for the FIFO’s (a limitation may be im-
posed by the operating system). All other memory for the
‘simulation is also allocated dynamically at run time, thereby
imposing no limitation on the number of blocks, the size of
parameter or state variable storage, etc. Conversely, no
more storage is allocated than is required, maintaining
maximum run time execution speed.

The other major service provided by BLOSIM is the
determination of the order of execution of the blocks. In
terms of the correctness of the simulation, the order of
execution of the blocks does not make any difference. The
FIFO discipline insures the proper synchronization of the
blocks, since a block will find an input FIFO empty if it
attempts to execute before the requisite data samples have
been generated by another block. However, some efficiency
is lost if blocks are often called when an input FIFO is
empty and no useful data samples are available. To al-
leviate this source of inefficiency, BLOSIM automatically
schedules the blocks to execute in the order of “signal
flow,” as determined by the topology of interconnection.
This means that when a block is executed, all the blocks
‘'which are connected to its input have been given the
opportunity to execute since the last execution of that
block, and data are likely to be available in the input
FIFO’s.

BLOSIM exccutes the blocks in the order determined by
the scheduling described above. Before a block is executed,
it is not checked whether the block has available samples
on all its input FIFQO’s, and room for samples on all its
output FIFO’s, since there are instances where a block
could still do something useful under those circumstances
(consider, for example, a delay block, which can generate
output samples even when its input FIFO is empty!).
However, BLOSIM does note whether the block success-
fully accesses an input or output FIFO. When a block does
not access a FIFO, or on every attempt to access a FIFO
finds that it is empty (in the case of an input FIFO) or full
(in the case of an output FIFO), that block is said to be
deadlocked. The simulation is automatically terminated
when all of the blocks in the system are deadlocked. Thus,
the criterion for termination of the simulation can be put
into a single block, such as the data generator “data” in
Fig. 1. Shortly after this block stops generating samples,
every block in the system will deadlock and BLOSIM will
terminate the simulation.

More detail on the BLOSIM scheduling algorithm will
be given in Section IV.

0 Lo .
—1 Lt .

"NAME"
FUNCTION

M N
OUTPUTS QUTPUTS

m-| n-t

Fig 4. Block abstraction.

IV. MOoRE ON UseR ToPOLOGY DEFINITION

This section describes in more detail the definition of
topology of interconnection of the blocks in BLOSIM. In
particular, BLOSIM enables the user to specify a hierarchi-
cal definition of blocks, in which blocks can be made up of
interconnections of other blocks. The motivations for this
feature, as well as the details of how it works, are described
in this section. - .

One detail which is omitted from this section is the
passing of parameters to blocks. For ease of under-
standing, this aspect of the topology definition is deferred
to Section VI

A. The Block Abstraction

Except for the passing of parameters, the internal struc-
ture of a block is not relevant during the topology defini-
tion phase of the simulation. Hence, for purposes of the
topology definition, a “block” is an abstraction as il-
lustrated in Fig. 4. This block abstraction consists of a
name, which is a character string, and a user provided
function, called the “user routine,” which specifies the
internal structure or implements the block. Both the name
and a pointer to the function must be specified during the
topology definition. In addition, a block abstraction has an
arbitrary number m inputs, which must be numbered con-
secutively from 0 to m —1, and n outputs which must be
numbered consecutively from 0 to n —1.

B. The Cosmology of Blocks

Pursuing the example of the data transmission system of
Fig. 1, it is desirable to further subdivide the system into
smaller blocks for actual programming. This could be done
by simply defining blocks with a finer granularity, but
BLOSIM provides a more structured method.

BLOSIM allows the user to define the internal structure
of a block in terms of an interconnection of other (smaller)
blocks. In terms of the block abstraction defined in Section
IV-A, these “composite” blocks are identical to blocks
which are directly implemented by user provided routines,
and can be used in exactly the same way.

The terminology that is used in BLOSIM in describing
the different types of blocks is modeled after cosmology: a
block which is elementary or atomic in the sense that it is
implemented directly by a user-provided routine is called a
STAR. A block which is defined as a connection of other
blocks, on the other hand, is called a GALAXY. Finally,
BLOSIM defines a special GALAXY which encompasses

142 . IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, YOL. SAC-2, NO. 1, JANUARY 1984

n .o _ol"pre"io O["DECODER™|0 O['DESCRAMBLER"|0 o], N
H H TPUT
INPUT DFE() BIPOLAR() SCRAMBLER() ou

(A) Receiver GALAXY Receiver()

[o o°

"ADDER
ADD()

‘SLICER* [o° o["Fomk"
THRESHOLD() FORK()| !

"OuTPUT"

"INPUT"|

"ONE SAMPLE DELAY]o of"FEEDBACK FILTER"|o
DELAY() TRANS.FILT ()

o

(B) DFE GALAXY DFE ()
Fig. 5. Internal structure of the receiver GALAXY block in Fig. 1.

the entire system, and which therefore has no inputs or
outputs, as the UNIVERSE. By definition, the UNI-
VERSE unlike all other blocks can only have a single
instance, and a routine defining the topology of the UNI-
VERSE, universe(), must be provided.

The cosmology of blocks differs from ordinary cosmol-
ogy in that a GALAXY need not contain exclusively
STAR'’s, but rather can contain other GALAXY’s, There is
no limit on the number of allowed nestings of GALAXY’s.

Viewed in these terms, Fig. 1 is the UNIVERSE for the
system being simulated. Fig. 5(a) illustrates how the “re-
ceiver’ can be structured as a GALAXY made up of
several STAR’s, as well as another GALAXY, “DFE.” Fig,
5(b) illustrates the internal structure of “DFE,” which is
~ itself made up of several STAR’s.

C. Structuring for Efficiency of Execution

It was mentioned in Section II that the order of execu-
tion was automatically scheduled for efficiency. The rules
by which'this is done have implications with respect to the
efficiency of execution and should be understood by the
user. '

The scheduling of the order of execution of the blocks in
the UNIVERSE is done without regard to whether the
blocks are STAR’s or GALAXY’s. The rules for this
scheduling are as follows. All the blocks are examined to
find any which have no inputs. These blocks are scheduled
to execute in arbitrary order. At step k, all the blocks
which have not been scheduled in steps 1 through k —1 are
examined to find any which have inputs connected exclu-
sively to blocks which have been scheduled in steps 1
through & — 1. Blocks satisfying these criteria are scheduled
next in arbitrary order. Where deadlock exists, i.e., not all
the blocks have been scheduled and the unscheduled blocks
do not meet the criteria, the execution of a single arbitrary
block is “forced” and the scheduling proceeds as before.
These steps are repeated until all blocks within UNI-
VERSE have been scheduled.

At the execution phase, the blocks in the UNIVERSE
are executed in the order in which they were scheduled.
The simulation is terminated when all these blocks

deadlock, i.e., all fail to successfully access an input or
output FIFO.]

If the UNIVERSE contains a GALAXY, the blocks
within this GALAXY are scheduled to be executed in the
same manner as the blocks within the UNIVERSE. Any
connection to the input of a block from the GALAXY
input is treated as if it did not exist; that is, it is assumed
that the FIFO’s connected to these inputs have available
samples since the GALAXY was appropriately scheduled
at the next higher level of the hierarchy. During the execu-
tion phase, when a GALAXY block within the UNI-
YERSE is executed, what actually happens is that the
blocks within the GALAXY are executed in the order
determined by the schedule until these blocks deadlock.
Thus, the definition of deadlock for a GALAXY block
within the UNIVERSE is actually a deadlock of all the
blocks within that GALAXY. Similar rules are applied to
any GALAXY within a GALAXY.)

These rules for execuiion have important implications
for the efficiency of the simulation. In particular, where a
part of the system contains a feedback loop, it is important
to define a GALAXY containing that feedback loop. Con-
sider the case of GALAXY dfe() of Fig. 5(b). Generally,
when dfe() is executed, external blocks will have placed a
number of samples in the FIFO connected to the input of
the GALAXY. However, because of the feedback loop,
each block in the GALAXY can only generate one sample
per pass through the loop. However, since dfe() is defined
as a GALAXY, it will be allowed to execute until the input
FIFO is empty, whereas if it was not a GALAXY, each
block would only execute once and only one sample on the
input FIFO would be exhausted. In the latter case, the
entire simulation would be forced into a one sample per
pass mode, slowing it down considerably. Thus, defining
dfe() as a GALAXY will result in much greater efficiency
in the execution phase of the simulation.

V. PROGRAMMING THE USER GALAXY ROUTINE

As previously mentioned, there are two types of user
routines which must be provided, the user GALAXY
routine(s) which specify the topology of interconnection,
and the user STAR routines which simulate the functional-
ity of the system. This section describes the primitives
provided by BLOSIM for use in the routines defining the
internal structure of the UNIVERSE or a GALAXY. The
next section repeats this task for the user STAR routines.

Two BLOSIM functions, star() and galaxy(), create a
STAR and a GALAXY block, respectively. They must be
provided a name for the block (a character string) and a
function specifying the internal structure of the block (a
function pointer). In addition, as explained in Section VII,
they are also provided a pointer to a parameter storage
area. The user is obligated to provide the promised routines,
and in particular the user must provide a routine universe()
which defines the topology of the UNIVERSE. '

MESSERSCHMITT: TOOL FOR STRUCTURED FUNCTIONAL SIMULATION

BLOSIN
KERNAL

=,

30

/

Fig. 6. Block interconnection abstraction.

The user can connect two blocks together, where each is
cither a STAR or GALAXY, using a supplied routine
connect(). Provided as arguments to this routine are the
names of the two blocks to be connected, the numbers of
the output and input connection, respectively, and the
length of the FIFO to be supplied in the connection. When
the connection is between a block and the output of the
GALAXY that the block is contained in (which cannot be
the UNIVERSE), then by convention the name of the
block to which the connection is made is “output” (and
similarly “input” for an input connection). These rules
imply that “input” and “output” are not legal names for
blocks.

Finally, it should be noted that only a single FIFO is
created even though a connection may be defined through
a hierarchy of GALAXY’s. As a result, the FIFO lcngth
providcd by .the user for any connection to “input”

“output” is ignored by BLOSIM (and can in fact bc
omitted). .

VI. PROGRAMMING THE USER STAR ROUTINE

This section describes the functions available in pro-
gramming the user STAR routines.

A. Block Interconnection Abstraction '

A user STAR routine is divided into two parts: the
initialization part and the part which implements the func-
tionality of the simulation of the corresponding block. The
functional part of the routine must interface the FIFO’s
which are connected to the block. This interface is ab-
stracted as shown in Fig. 6. The STAR which is generating
data puts that data in the FIFO to which it is connected
using the provided routine put(). The STAR need not know
anything about this FIFO, like its location in memory,
since these details are handled by BLOSIM. However, the
STAR does need to know if the FIFO is full; that is,

143

cannot accept any additional data. The routine put() itself
returns a status which indicates whether or not the FIFO is
full. The status of any FIFO can also be checked by
functions which return the size of the FIFO and the
number of samples it currently holds. Similarly a function
get() is provided which returns a sample from an input
FIFO together with a status indicating whether the FIFO is
empty.

A user STAR routine can also determine the number of
input or output FIFO’s to which it is connected. This
enables the STAR, if desired, to be tailored to the number
of connections at execution time. Where the number of
connections is fixed, this enables the STAR to determine
that the expected number of connections were made in the
topology definition as a consistency check.

An important service performed by BLOSIM 1s the
maintenance of state variable storage. State variables are
those variables whose value must be maintained from one
call to the STAR to the text. Siatic memory canriot be used
for storage of these variables, since multiple instances of a
block are allowed and these instances cannot share state
variables. The STAR therefore stores state variables in a
single block of memory (using the “structure” construct of
O), and requests this storage on the first initialization call
to the STAR. BLOSIM then dynamically allocates this
permanent storage, and subsequently passes a pointer to
this storage to the STAR on every invocation. Thus, the
state variable storage must be anticipated by the STAR on
its first invocation. A STAR can later dynamically allocate
more storage itself, but it must maintain a pointer to this
storage in the state variable storage area allocated by
BLOSIM.

B. Use of Macro Processor

All the calls to . BLOSIM described in this section are
actually macros, which the C macro preprocessor uses to
substitute the appropriate code into the STAR in the first
stage of compilation. Thus, most calls to BLOSIM from a
user STAR function do not involve function calls, but
rather result in direct access to BLOSIM data structures.
This implementation is new to a later version of BLOSIM,
and was chosen to improve the efficiency at run time.

As an indication of the overhead that BLOSIM incurs,

- two profiles were made of BLOSIM simulations on a VAX

780 computer under the UNIX operating system, The first
simulation was a minimal one in which the topology is set
up and only 100 samples are generated and printed out.
Thus, this case can be assumed to give the miinimum
memory and execution time for any BLOSIM simulation.
The static memory requirements for this run were 27
kbytes and the total execution time was 2.4 s. Of this time,
5.6 percent was used for topology setup, 2.8 percent was
consumed by the user STAR routines, and 4.2 percent was
taken in the FIFO management routines. The remainder of
the time was used by system funcuons such as the printing,

memory allocation, etc. ’

144 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. SAC-2, NO. 1, JANUARY 198«

The second profile was of a moderately large run on a
system encompassing most of Fig. 1, performed on 1000
samples. In this case the total static memory requirement
was 54 kbytes with an execution time of 98 s. Of this time,
an insignificant percentage was devoted to topology setup,
8.4 percent was used by the routine which called the
STAR’s in the order of the schedule, 16.2 percent was used
by the FIFO management routines, and 52 percent was
spent in the user STAR routines themselves. Since the
remaining system overhead time would be similar for any
approach to simulation, this illustrates that the overhead
that BLOSIM imposes on a typical simulation has success-
fully been kept to a minimum.

The use of macros does have one disadvantage which the
programmer of a user STAR function must keep in mind:
all arguments of macros should be simple variables, rather
than expressions. The reason is that all the macros cause
the evaluation of any expression which is an argument
more than once, which will often have unintended side
effects. For example, if the statement

a=2%

as an argument (o a macro call were to be executed twice,
the result would be unexpected. . :

PAsSING PARAMETERS TO USER STAR OR
GALAXY ROUTINE

VIL

BLOSIM uses a quite general scheme for passing param-
eters which is similar to the state variable storage scheme.
A GALAXY routine which wishes to pass a set of parame-
ters stores them in a block of memory (using the C
“structure”) and passes a pointer to this memory and an
integer containing the size of the storage in bytes to
BLOSIM in the star() or galaxy() call in a user topology
routine. BLOSIM makes a permanent copy of this storage
area, and in each subsequent call of the user STAR or
GALAXY routine, passes the pointer and integer as argu-
ments (a user STAR routine has a third argument, a
pointer to state variable storage). The size argument is
usually used in the user routine to check if the parameter
storage is the expected size, but it could also be used as a
way to pass a variable number of parameters. This method
of passing parameters is completely general—in no way
does it restrict the number or size of parameters which can
be passed to a routine.

VIII. BLOSIM ENHANCEMENTS

The preceding describes the basic BLOSIM kernel
routines and primitives provided to the user. This kernel is
designed to be very general, so as not to limit the potential
applications. However, this generality leads to a program

which is more difficult to use than is necessary in severa
respects. For one, every change in the simulation, even a
simple as a change in a parameter, requires a recompila
tion. Even though in the UNIX operating system environ
ment this process is easily automated, it is nevertheles
stow (30-60 s would be a typical real-time). Anothe
difficulty is the relatively large amount of code required. t
interface a user STAR function to BLOSIM. While thi
code is very similar from one STAR to another, it repre
sents easily half the total code of a typical small STAF
routine (and in a system properly partitioned all STAI
routines should be small). Section VII gives an illustratio:
of this interface code.

~ Fortunately, due to the generality of the BLOSIM kernel
it is simple to overlay layers of software which make th
facility easier to use (at some loss of generality). As use
experience with BLOSIM has been assimilated, a numbe
of these enhancements have been implemented, and the
are briefly described in this section. It should be emphasize:
that these enhancements have involved absolutely n
change to the BLOSIM program itself, but they rather us
the BLOSIM-provided primitives as a basis for buildin,
more convenient primitives for the user interface. Interna
changes to the implementation of BLOSIM have aiso bee
made, but with no impact on the user interface.

A. PARAM— A Parameter Passing Facility

PARAM is a standardized method of passing parameter
between blocks in BLOSIM. It is not a program, but rathe
an include file “param.h” which can be included in an
user STAR or GALAXY function which wishes to use thi

‘style of parameter passing. It is not necessary for a

parameter passing to use this facility within a give
BLOSIM simulation. PARAM is a specialization of th
BLOSIM parameter passing scheme, in that a particula
format for the parameter storage block is assumed. PARAM
restricts the type of parameters which can be passed t
integer and floating point variables and character string:
However, this restriction is quite useful in that paramete
passing becomes more standardized and easier to maste
and understand.

PARAM also allows the user to specify a parameter a
DEFAULT or NOSET. In the former case, the receivin
routine is asked to set the parameter to a default value. ¢
NOSET parameter implies that the sending routine ha
deliberately not set the parameter. This parameter type i
included for the situation where it is desired to pass
variable number of parameters, since the array of paramt
ters can be terminated with a NOSET parameter.

PARAM uses the C “union” construct to pass parame
ters which can be one of several types (basically th:
allocates storage sufficient for the type which requires th
largest storage). It is simple to use because PARAM als
defines two useful macros which make it more convenier
for the user to address a parameter type and value.

\.,\{ESSERSCHMITI'Z TOOL FOR STRUCTURED FUNCTIONAL SIMULATION

B. FILETOP — Reading Topology from a File

Normally BLOSIM topology information concerning the
interconnection of blocks is contained in a set of user
GALAXY routines, which are C programs. This implies
that whenever a connection or parameter is changed, a
recompilation and linking of the BLOSIM object module is
necessary. -

FILETOP is a replacement for the normally user-pro-
vided universe() routine. This replacement reads the topol-
ogy information from files specifying the topology of the
UNIVERSE and each GALAXY. Not only are these files
easier to generate than the corresponding C programs, but
avoiding a recompilation and linking speeds up the process
considerably (if a user STAR routine is changed, however,
a recompilation of that STAR and linking is still required).

The format of a FILETOP file is similar to that used by
the user STAR function preprocessor utility STARGAZE,
to be described in the next section. Both FILETOP and
STARGAZE use PARAM as their parameter passing
mechanism. FILETOP provides the additional capability
to pass a parameter from the input to a GALAXY directly
to the block within the GALAXY.

The format and use of FILETOP will be illustrated by
the programming example in Section IX.

C. STARGAZE — A STAR Routine Preprocessor

User STAR functions for BLOSIM, in addition to
implementing the functionality of a simulation, must do a
number of things to effect the interface to BLOSIM, in-
clude accept arguments, allocate storage for state variables,
check the size of parameter storage and the number of
input and FIFO’s, default parameter values and initialize
state variables, etc. STARGAZE is a program which
facilitates and automates many of these functions, thereby
permitting the user to concentrate on the simulation func-
tionality rather than the interface to BLOSIM.

STARGAZE is a preprocessor for user STAR functions
which allows the user to express many of the interface
parameters in a form similar to and compatible with
FILETOP, and then turns this specification into C code for
compilation and execution. [t is thus natural for the topol-
ogy of GALAXY’s to be developed using the FILETOP
utility. However, it is possible to write user GALAXY
routines in C and still use STARGAZE to develop STAR’s
(or vice versa). It is, however, in that case necessary to use
the PARAM utility for passing parameters.

STARGAZE provides a number of control line formats.
The user must of course provide in the input file the C
program which implements the functionality of the user
STAR function. This C program generally includes three
parts: declarations of variables, initialization code which is
to be executed the first time the user STAR routine is
called by BLOSIM, and the main body of code which is

145

executed every time the user STAR function is called. This
code performs get()’s and put()’s and processes the sam-
ples. Each of these three blocks of code is delimited by a
keyword line; for example, the declarations code is de-
limited by a line containing the word “declarations” and a
line with the word “end.” This will be illustrated in the
programming example in Section IX.

The PARAM and FILETOP utilities have received wide
user support, but many users have preferred to develop
their own STAR routines from scratch because of the
enhanced feeling of control. An alternate approach to
reducing the STAR interface code is therefore planned.
This approach would work like FILETOP, in that initiali-
zation parameters (like the number and type of parameters,
initialization of parameters, number of FIFO’s, etc.) would
be stored in a file associated with the STAR. A provided
routine could then be invoked by the STAR during initiali-
zation, and this routine would read this file and perform
the necessary actions.

D. AUTOMAKE — BLOSIM Run Time Support

Running a BLOSIM simulation requires the compilation
and linking of the user STAR and GALAXY routines
together with the BLOSIM kernel routines. Keeping track
of all the files and routines involved in a given simulation,
which might typically be as high as fifty, would be difficult.
Fortunately, most users have run BLOSIM in a UNIX
operating system environment. UNIX provides an im-
portant tool for keeping track of all the routines involved
in a simulation, the “make” command. This command
reads a file, called the “makefile,” in which all the steps
required for the compilation and running of the simulation
can be stored, and automatically executes these steps where
required. -

Even with the ““make” facility, it is necessary to keep the
“makefile” updated as STAR’s are added or deleted from
the simulation. Fven this step has been eliminated by
AUTOMAKE. AUTOMAKE requires the exclusive use of
the FILETOP facility for topology specification, and auto-
matically examines the user’s FILETOP topology files to
find the names of all the STAR’s involved in the simula-
tion and invokes the “make” command.

Running a BLOSIM simulation using AUTOMAKE is
thus a single step process: after editing a STAR routine
source code, or making any other change, the single AU-
TOMAKE command is executed. All the subsequent steps
through the actual execution of the object code then pro-
ceed automatically. AUTOMAKE, unlike the remainder of
BLOSIM, is UNIX operating system specific.

IX. PROGRAMMING EXAMPLE

Readers not familiar with the C language and UNIX
operating system may not have a good idea of how a

146

#Calaxy implements receiver for full-duplex dats transmission system
#Create the blocks in the Galary

#Parameters for dfe()

param int 2 #Number of taps

paranm array 2 3.4 2.2 #Tap veights

galazy dfe dfe.c

star decoder dipolar.c

star descracbler acrambler.c

#Connect the blocks with fifo lengths 100
connect ipput O dfe O

connect dfs O decoder 0 100

connect deccder O descrambler O 100
connect deacrambler O output O

‘Fig. 7. FILETOP input file for receiver() GALAXY of Fig. 5(a).

paraz samples delay int

no_input_fifos 1
no output fifos 1

state zerc_count int initialize O
declaraticns

SAMPLE x;
int return_code;

end

3ain_code
/% Put out zero samples until zero_count = delay ./
while{zero_count ¢ samples delay) [

/% try to put out & zero sample #/
return_code = put(0,0.0);

if(return_code >= 0)

/% zero was put out,
++zero_count;

s0 increment zero_count */

if(return _code !'= 0}
| return(0);
t

/*® enough zercs have been put out, so
move ssmples from input to output fifo e/

/* output fifo mow full */

/® first make sure the output fifo is not full before
vwe get a sample from an input fifo */

1f(length_output _fifo(0) == maxlength_output_| ﬂfo(O))
return{0); /® output fifo full ®/

while(get(0,8x) >= 0) | /* get sample from input fifo */

1f(put(0,x) != 0) /% put sample on output fifo */
| return(0); /® output fifo full %/

return(0); /® input fifo eapty %/

end

(a)

Input to STARGAZE for block dela ({0 C program for delay(),

Fig. 8.
which is output of STAR!

simulation is developed using BLOSIM even after reading
the preceding sections. For this reason, a short program-
ming example is included here.

Assume that it is desired to simulate the system of Fig. 1.
Fig. 7is a FILETOP mput file which specifies the topology
of the UNIVERSE. The commands in this file are self
evident.

As an illustration of the programming of a STAR routine,
consider the simple star function delay(), which simply
takes samples off a single input FIFO and delays them by

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. SAC-2, NO. 1, JANUARY 19§

#include
finclude “star.n”
#include "param.n”
#include <atdic.h>
typedef struct |

int z_ero_count:

} STATE,*STATEPTR;
#define samples_delay param_value(0,d)
#define zero count pct-tn): ero_count
dalny(pparlm size,potate, plnr)
PARAMPTR pparam;
int size;
STATEPTR pstate;
?TAEPI‘R pstar;

“type.h”

SAMPLE x;
int return code:

if(pstate == NULL) {
pstate = (STATEPTR) nlloc atate_var(1,sizeof(S
if(size !'v 2*sizeof(PARAN))
return(200);
if(paran _type(1) != NOSET)
Teturn(201); ~
if(param_type(0) == INT)

TATE});

;
else return(202);
if(no_input_fifos() '= 1)
return(203);
1f{no_output_fifos() != 1)
re.urn(204);
tero_count = 03

/* Put out zero samples until zero_count = delay */

while(zero_count < samples_delay) |

/* try to put out a zero sample %/
return_code put(0,0.0);

if(rﬂurn code >= 0)

/® sero was put out, 80 jncrement zero_count hd
+*3ero_count;

if(return_code != 0)
\ r-turn(O);

/® enough seros have been put out, s0
move sanples from input to output fife ./

/* output fifo now full */

/% first sake sure the output fifo is not full before
we get a sample from sn input fifo ®/

1f(length output fifo{0) == maxlength_output_! £i£0(0))
return{07; ~ /* output fifo full ¢/

vhile(get(0,4x) >= 0) { /* get sample fros ioput fifo ¢/

if(put(0,x) != O) /* put sample on output fifo ¥/

| return(0); /® output fifo full ¢/
return(0}; /* input fifo empty ®/
(b)
Fig. 8. (Continued.)

a specified number of samples. The delay function surpri
ingly does not require internal storage, but is implement
by putting out a number of zero-valued samples equal
the delay before accessing the input FIFO’s. The file whi
is used as the input to STARGAZE is shown in Fig. 8(:
The resulting C program, which is similar to what the us
might develop from scratch, is shown in Flg 3(b).

X. USER EXPERIENCE AND CONCLUSIONS

BLOSIM has been in use for about a year, and has be
used in several companies and several academic enviro
ments. Most of the users have been former Fortran pr
grammers accustomed to developing simulations fro

MESSERSCHMITT: TOOL FOR STRUCTURED FUNCTIONAL SIMULATION
scratch. While programming in a modern structured lan-
guage like C is, in the author’s opinion, of long-term
benefit, it is not an especially easy transition for Fortran
programmers, especially in a programming environment
like BLOSIM which uses virtually all the facilities of C.
Thus, there has been generally a transition period of one to
two months during which the users have first accustomed
themselves to C and then experimented with BLOSIM.
Once users have overcome this (in some cases painful)
transition, they have almost always been very pleased with
the results. The increased productivity and greater flexibil-
ity in trying different simulation configurations is evident
to most users. At least one large simulation effort has
utilized STAR routines programmed by at least six persons
at different times, and no difficulties have been encoun-
tered in interfacing these routines. Some of the STAR
routines have been ported to industry, again without diffi-
culty.

It is hoped that this experience with BLOSIM will have
impact on the methodology used in simulation efforts. In
particular, it illustrates the benefits of using structured
programming methods and environments, particularly in
complex programming efforts. If a simulation vehicle such
as BLOSIM were widely used in the simulation of com-
munications and signal processing systems, the sharing of
routines throughout the research and development com-
munity would be much more practical and effortless than it

is today.

REFERENCES

{1] B. W. Kernighan and D. M. Ritchie, The C Programming Language.
Englewood Cliffs, NI: Prentice-Hall, 1978.

{2] D. G. Messerschmitt, “BLOSIM—A block simulator, version 1.1,”
Univ. California, Berkeley, CA, int. memo.

147

[3] ©O. Agazzi, D. A. Hodges, and D. G. Messerschmitt, “Large-scale
integration of hybrid-method digital subscriber loops,” IEEE Trans.
Commun. p. 2095, Sept. 1982.

[4] D.G. Messerschmitt, “A transmission line modeling program written
in C,” IEEE J. Select. Areas. Commun., this issue, pp. 148-153.

[S] B. Gold and C. M. Rader, Digital Processing of Signals. New York:
McGraw-Hill, 1969, ch. 5.

[6] 1. L. Kelly, C. L. Loshbaum, and V. A. Vyssotsky, “A block diagram
compiler,” Bell Syst. Tech. J., p. 669, M:f' 1961.

[7] €. M. Rader, “Speech compression simulation compiler,” J. Acoust.
Soc. Amer., June 1965. :

[8] B. Karafin, “A sax:)pled-data system simulation language,” in System
Analysis by Dlgt Computer, F. Kuo and J. Kaiser, Eds. New
York: Wiley, 1966.

David G. Messerschmitt (S'65-M'68-SM’78~
F’82) received the B.S. degree from the Univer-
sity of Colorado, Boulder, in 1967, and the M.S.
and Ph.D. degrees from the University of
Michigan, Ann Arbor, in 1968 and 1971,espec-
tively.

He is a Professor of Electrical Engincering and
Computer Sciences at the University of Cali-
fornia, Berkeley, where he has been since 1977.
From 1968 to 1977 he was a member of the
Technical Staff and later Supervisor at Beil
Laboratories, Holmdel, NJ, where he did systems engineering, develop-
ment, and research on digital transmission and digital signal processing
(particularly relating to speech processing). His current research interests |
are analog and digital signal processing, speech processing, digital trans-
mission, multiprocessor approaches to signal processing and circuit simu-
lation, digital subscriber loop transmission, and adaptive filtering. He has
published over 50 papers and has 10 patents issued or pending in these
fields. Since 1977 he has also served as a consuitant to a number of
companies. i

Dr. Messerschmitt is a member of Eta Kappa Nu, Tau Beta Pi, and
Sigma Xi. He is also currently a member of the Communication Theory
Committee and the Board of Governors of the IEEE Communications
Society. He has also organized and participated in a number of short
courses and seminars devoted to continuing engineering education. He is
presently serving as Director of the Industrial Liaison Program of the
Department of Flectrical Engineering and Computer Sciences at the
University of California.

